Find the square root of i

When dealing with powers of complex numbers, always start by putting the quantity into exponential form.

i has a magnitude of and an argument of π/2. Using Euler's formula,

i = exp(iπ/2)

Now the expression is in exponential form, taking the square root is easy, using basic exponential math.

sqrt(i) = (exp(iπ/2))^(1/2) = exp(iπ/4)

This quantity has a modulus of 1 and an argument of π/4. Using Euler's formula again,

sqrt(i) = (1 + i)/sqrt(2)

JL
Answered by Jamie L. Further Mathematics tutor

14184 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What is De Moivre's theorem?


Using z=cos(θ)+isin(θ), find expressions for z^n-1/z^n and z^n+1/z^n


(FP1) Given k = q + 3i and z = w^2 - 8w* - 18q^2 i, and if w is purely imaginary, show that there is only one possible non-zero value of z


Using your knowledge of complex numbers, such as De Moivre's and Euler's formulae, verify the trigonometric identities for the double angle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning