Find the square root of i

When dealing with powers of complex numbers, always start by putting the quantity into exponential form.

i has a magnitude of and an argument of π/2. Using Euler's formula,

i = exp(iπ/2)

Now the expression is in exponential form, taking the square root is easy, using basic exponential math.

sqrt(i) = (exp(iπ/2))^(1/2) = exp(iπ/4)

This quantity has a modulus of 1 and an argument of π/4. Using Euler's formula again,

sqrt(i) = (1 + i)/sqrt(2)

JL
Answered by Jamie L. Further Mathematics tutor

14235 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Evaluate (1 + i)^12


How far is the point (7,4,1) from the line that passes through the points (6,4,1) and (6,3,-1)?


Find all the cube roots of 1


I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning