Find the square root of i

When dealing with powers of complex numbers, always start by putting the quantity into exponential form.

i has a magnitude of and an argument of π/2. Using Euler's formula,

i = exp(iπ/2)

Now the expression is in exponential form, taking the square root is easy, using basic exponential math.

sqrt(i) = (exp(iπ/2))^(1/2) = exp(iπ/4)

This quantity has a modulus of 1 and an argument of π/4. Using Euler's formula again,

sqrt(i) = (1 + i)/sqrt(2)

JL
Answered by Jamie L. Further Mathematics tutor

11802 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Where does Euler's Formula come from?


Integrate xsin(x).


What is sin(x)/x for x =0?


prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences