Find the square root of i

When dealing with powers of complex numbers, always start by putting the quantity into exponential form.

i has a magnitude of and an argument of π/2. Using Euler's formula,

i = exp(iπ/2)

Now the expression is in exponential form, taking the square root is easy, using basic exponential math.

sqrt(i) = (exp(iπ/2))^(1/2) = exp(iπ/4)

This quantity has a modulus of 1 and an argument of π/4. Using Euler's formula again,

sqrt(i) = (1 + i)/sqrt(2)

JL
Answered by Jamie L. Further Mathematics tutor

12295 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

For what values of x is Cosh^2(x) - Sinh(x) = 5 Give your answer in the form of a logarithm


A curve has polar equation r = 1 + cos THETA for 0 <= THETA <= 2Pi. Find the area of the region enclosed by the curve


Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1


Show that G = {1, -1} is a group under multiplication.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences