How do I do a proof by induction?

For this explanation we will use the following example from a 2013 exam paper:

   If u1= 2 and un+1=(5un-3)/(3un-1), then prove that un=(3n+1)/(3n-1) for all n>=1

The first step of any proof by induction is to make the assumption that what we want to prove is true for a particular value n = k:

  Assume there exists k such that uk=(3k+1)/(3k-1)

We must then prove that it is also true for n = (k+1), we start by finding uk+1 using the original formula:

  uk+1 = (5uk-3)/(3uk-1) = (5*(3k+1)/(3k-1) - 3)/(3*(3k+1)/(3k-1) - 1) = ... = (3k+4)/(3k+2)

We now want to write this in terms of k+1, in this case it is fairly straightforward but other times it may be harder to see:

  uk+1 = (3k+4)/(3k+2) = (3(k+1) - 3 + 4)/(3(k+1) - 3 +2) = (3(k+1)+1)/(3(k+1)-1)

When written in terms of k+1, uk+1 should now be in the form that we want to prove for unor a form that can be rearranged into that one. There is still one step left however which is CRUCIAL for this to be a proper proof by induction. We have to prove this is true for a certain value of n, in this case n = 1:

   u= 2 = (31+1)/(31-1) therefore the assumption is true for n = 1. It is therefore true for n = 1, 2, 3, ...

This last step is usually very simple but can often be overlooked so make sure to include it!

Related Further Mathematics A Level answers

All answers ▸

The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.


Prove that the sum of squares of the first n natural numbers is n/6(n+1)(2n+1)


Given that y = arcsinh(x), show that y=ln(x+ sqrt(x^2 + 1) )


how do I do proofs by induction?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences