How do I do a proof by induction?

For this explanation we will use the following example from a 2013 exam paper:

   If u1= 2 and un+1=(5un-3)/(3un-1), then prove that un=(3n+1)/(3n-1) for all n>=1

The first step of any proof by induction is to make the assumption that what we want to prove is true for a particular value n = k:

  Assume there exists k such that uk=(3k+1)/(3k-1)

We must then prove that it is also true for n = (k+1), we start by finding uk+1 using the original formula:

  uk+1 = (5uk-3)/(3uk-1) = (5*(3k+1)/(3k-1) - 3)/(3*(3k+1)/(3k-1) - 1) = ... = (3k+4)/(3k+2)

We now want to write this in terms of k+1, in this case it is fairly straightforward but other times it may be harder to see:

  uk+1 = (3k+4)/(3k+2) = (3(k+1) - 3 + 4)/(3(k+1) - 3 +2) = (3(k+1)+1)/(3(k+1)-1)

When written in terms of k+1, uk+1 should now be in the form that we want to prove for unor a form that can be rearranged into that one. There is still one step left however which is CRUCIAL for this to be a proper proof by induction. We have to prove this is true for a certain value of n, in this case n = 1:

   u= 2 = (31+1)/(31-1) therefore the assumption is true for n = 1. It is therefore true for n = 1, 2, 3, ...

This last step is usually very simple but can often be overlooked so make sure to include it!

Related Further Mathematics A Level answers

All answers ▸

Find arsinh(x) in terms of x


Solve the second order ODE, giving a general solution: x'' + 2x' - 3x = 2e^-t


When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


find the sum of r from 0 to n of : 1/((r+1)(r+2)(r+3))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences