How to determine the number of unique real roots of a quadratic equation.

Take any quadratic equation, eg/ 3x2+4x-2=5, and rearrange to equal 0, ie/ 3x2+4x-7=0   (if you have an expression, ie/ there is no equals sign, then simply equate the expression to 0).

Now, we use the discriminant function, b2-4ac, of the quadratic, ax2+bx+c=0. Notice that a=3, b=4, and c=-7, in this case. This means that the discriminant is 42-43(-7)=16-(-84)=100. This is greater than 0. Therefore, there exist 2 unique real roots to our quadratic.

Simply put, if, for any quadratic of the form ax2+bx+c=0, that b2-4ac>0, then there exist 2 unique real roots, if b2-4ac=0 then there is 1 repeated real root, and if b2-4ac<0, then there are no real roots.

YP
Answered by Yaniv P. Maths tutor

21756 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

PQRS is a parallelogram with P->Q=a and P->S=b. Find S->Q in terms of a and b. N is a point between S and Q, where SN:NQ is 3:2, find N->R


Solve the simultaneous equation: y=x^2+2x-2 y=4x+6


The time, T seconds, it takes a water heater to boil a constant mass of water is inversely proportional to the power, P watts, of the water heater. When P is 300, T is 20. What is T when P is 400?


Simplify (8x^2 + 36x)/(2x + 9) and explain why it is an even expression.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning