Differentiate a^x with respect to x

y=a^x

take natural logs (also written as ln or log base e) of both sides

lny=lna^x

by logarithms rules lna^x=xlna

lny=xlna

Now differentiate implicitly

1/y = (dx/dy)lna

Note here lna is just a constant, then rearranging we have

dy/dx = ylna

and since y=a^x

dy/dx = a^x(lna)

Answered by James M. Maths tutor

40978 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

give the coordinates of the stationary points of the curve y = x^4 - 4x^3 + 27 and state with reason if they are minumum, maximum, or points of inflection.


Integrate ln(x)


Express (5sqrt(3)-6)/(2sqrt(3)+3) in the form m+nsqrt(3) where m and n are integers. [Core 1]


Differentiate y=ln(2x^2) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences