Finding the derivative of a polynomial.

Take any polynomial, eg/ y=x3+1/2x2-3x+9. Then dy/dx=3x,+x-3, in this case. This is because, when deriving in this sense, you take each term in x, multiply it by its index, and reduce that index by 1.

In a general sense, for y=(n0)xn+(n1)xn-1+...+(nn-1)xn-(n-1)+(nn),             dy/dx=(n)(n0)xn-1+(n-1)(n1)xn-2+...+(n-(n-1))(nn-1). Multiply the x term by the power, reduce the power by one. This works for all powers, even non-integers.

Related Further Mathematics GCSE answers

All answers ▸

Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


Let Curve C be f(x)=(1/3)(x^2)+8 and line L be y=3x+k where k is a positive constant. Given that L is tangent to C, find the value of k. (6 marks approx)


Find the definite integral of f(x) = 12/(x^2+10x+21) with limits [-1,1]. Give your answer to 2 decimal places.


To differentiate a simple equation: y= 4x^3 + 7x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences