Finding the derivative of a polynomial.

Take any polynomial, eg/ y=x3+1/2x2-3x+9. Then dy/dx=3x,+x-3, in this case. This is because, when deriving in this sense, you take each term in x, multiply it by its index, and reduce that index by 1.

In a general sense, for y=(n0)xn+(n1)xn-1+...+(nn-1)xn-(n-1)+(nn),             dy/dx=(n)(n0)xn-1+(n-1)(n1)xn-2+...+(n-(n-1))(nn-1). Multiply the x term by the power, reduce the power by one. This works for all powers, even non-integers.

YP
Answered by Yaniv P. Further Mathematics tutor

5711 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Factorise the following quadratic x^2 - 8 + 16


Simplify fully the expression ( 7x^2 + 14x ) / ( 2x + 4 )


Find the stationary points of y=x^3 + 3x^2 - 9x - 4


Make y the subject of the formula x = SQRT((y+1)/(y-2))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning