Finding the derivative of a polynomial.

Take any polynomial, eg/ y=x3+1/2x2-3x+9. Then dy/dx=3x,+x-3, in this case. This is because, when deriving in this sense, you take each term in x, multiply it by its index, and reduce that index by 1.

In a general sense, for y=(n0)xn+(n1)xn-1+...+(nn-1)xn-(n-1)+(nn),             dy/dx=(n)(n0)xn-1+(n-1)(n1)xn-2+...+(n-(n-1))(nn-1). Multiply the x term by the power, reduce the power by one. This works for all powers, even non-integers.

YP
Answered by Yaniv P. Further Mathematics tutor

5818 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

f(x) = 2x^3+6x^2-18x+1. For which values of x is f(x) an increasing function?


A ladder of length 2L and mass m is placed leaning against a wall, making an angle t with the floor. The coefficient of friction between all surfaces is c. At what angle t does the ladder begin to slip?


Solve these simultaneous equations: 3xy = 1, and y = 12x + 3


Prove that tan^2(x)=1/(cos^2(x))-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning