Finding the derivative of a polynomial.

Take any polynomial, eg/ y=x3+1/2x2-3x+9. Then dy/dx=3x,+x-3, in this case. This is because, when deriving in this sense, you take each term in x, multiply it by its index, and reduce that index by 1.

In a general sense, for y=(n0)xn+(n1)xn-1+...+(nn-1)xn-(n-1)+(nn),             dy/dx=(n)(n0)xn-1+(n-1)(n1)xn-2+...+(n-(n-1))(nn-1). Multiply the x term by the power, reduce the power by one. This works for all powers, even non-integers.

Related Further Mathematics GCSE answers

All answers ▸

Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5


Let y = (4x^2 + 3)^4. Find dy/dx.


A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.


(x+4)((x^2) - kx - 5) is expanded and simplified. The coefficient of the x^2 term twice the coefficient of the x term. Work out the value of k.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences