A ball of mass 0.7 kg strikes the wall at an angle of 90 degrees with speed 72 km/h. Consider that the bounce lasts for 0.1 s and is perfectly elastic. What is the magnitude of the average reaction force from the wall that acts on the ball?

initial speed: v =  72 km/h = 20 m/s. 
mass: m = 0.7 kg
time of the impact: t = 0.1 s
average force: F
The speed after impact is the same as initial speed, but velocity has got the opposite direction. Therefore, Δv = 2v

Δmomentum = Δp = mΔv = 2mv

from the Newton's 2nd Law:
F = Δp/Δt = 2mv/t
F = 20.720/(0.1) = 280 N

Answer: The magnitue of the average force equals 280 N. 

Answered by Filip M. Physics tutor

3665 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball is thrown vertically downwards at a speed of 10ms^-1 from a height of 10m. Upon hitting the floor 10% of the energy is dissipated through waste heat. What is the heighest point the ball reaches before it comes to rest? Take g=10ms^-2


Discuss how the graph of orbital velocities in rotational galaxies against distance from the galactic centre implies the existence of dark matter.


What is Kirchoff's first law?


With the help of a suitably labelled graph, explain what is meant by resonance of a mechanical system.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences