Answers>Maths>IB>Article

Find the coordinates that correspond to the maximum point of the following equation: y = −16x^2 + 160x - 256

To solve this problem, the maximum and minimum points of equations can be deduced through the differentiation process. This looks at the gradient of the function and the maximum/minimum value occurs when the gradient is zero.

The differentiation process is as follows:

f(x)=Axn

df(x)/dx = nAx(n-1)

The equation

y = −16x2 + 160x - 256

becomes

dy/dx= -32x+160

after differentiation and set dy/dx=0

0=-32x+160

x=5

and the corresponding value for y is:

y=-16(52)+160(5)-256= 144

And so the coordinate of the maximum point is:

(5,144)

MW
Answered by Michael W. Maths tutor

3338 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve the integral int(sin^2(x))dx


How to find a modulus and argument of w that is a quotient of z1 and z2 such that z1 = 1 + root(3)i and z2 = 1+ i using modulus-argument form?


IB exam question: Let p(x)=2x^5+x^4–26x^3–13x^2+72x+36, x∈R. For the polynomial equation p (x) = 0 , state (i) the sum of the roots; (ii) the product of the roots.


Which are the difference between polar and coordinate complex numbers?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning