Answers>Maths>IB>Article

Find the coordinates that correspond to the maximum point of the following equation: y = −16x^2 + 160x - 256

To solve this problem, the maximum and minimum points of equations can be deduced through the differentiation process. This looks at the gradient of the function and the maximum/minimum value occurs when the gradient is zero.

The differentiation process is as follows:

f(x)=Axn

df(x)/dx = nAx(n-1)

The equation

y = −16x2 + 160x - 256

becomes

dy/dx= -32x+160

after differentiation and set dy/dx=0

0=-32x+160

x=5

and the corresponding value for y is:

y=-16(52)+160(5)-256= 144

And so the coordinate of the maximum point is:

(5,144)

Answered by Michael W. Maths tutor

2950 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Let g (x) = 2x sin x . (a) Find g′(x) . (b) Find the gradient of the graph of g at x = π .


Prove by induction that 7^(8n+3) + 2 is divisible by 5, where n is a natural number.


IB exam question: Let p(x)=2x^5+x^4–26x^3–13x^2+72x+36, x∈R. For the polynomial equation p (x) = 0 , state (i) the sum of the roots; (ii) the product of the roots.


Let f (x) = 5x and g(x) = x2 + 1 , for x ∈  . (a) Find f-1(x) . (b) Find ( f ° g) (7) .


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences