How do you solve the integral of ln(x)

This will use the process of integration by parts.

First, notice that ln(x)=ln(x)*1.

So, the integral of ln(x) is the integral of ln(x)1. The process of integration by parts is;  int(vdu/dx)dx=vu - int(dv/dx*u)dx.

Set ln(x)=v, 1=du/dx, so int(ln(x)*1)dx = ln(x)- int(1/xx)dx = xln(x)-int(1)dx = xln(x)-x+constant.

And you're done!

Answered by Yaniv P. Maths tutor

4248 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I use simple integration?


y=7-2x^5. What's dy/dx?Find an equation for the tangent to the curve where x=1. Is itan increasing or decreasing function when x=-2?


f(x)=6/x^2+2x i) Find f'(x) ii) Find f"(x)


Find the integral of (2(3x+2))/(3x^2+4x+9).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences