How do you solve the integral of ln(x)

This will use the process of integration by parts.

First, notice that ln(x)=ln(x)*1.

So, the integral of ln(x) is the integral of ln(x)1. The process of integration by parts is;  int(vdu/dx)dx=vu - int(dv/dx*u)dx.

Set ln(x)=v, 1=du/dx, so int(ln(x)*1)dx = ln(x)- int(1/xx)dx = xln(x)-int(1)dx = xln(x)-x+constant.

And you're done!

Answered by Yaniv P. Maths tutor

4251 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the circumference x^2 - 2x + y^2 = 3, find the position of the center P and the value of the Radius. Then find the intercepts with the y axis and the tangent to the circumference at the positive y intercept.


How do you know if the second derivative of an equation is a maximum or a minimum?


Find ∫(2x^5 -4x^-3 +5) dx


What is the probability to obtain exactly 2 heads out of 3 tosses of a fair coin?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences