Solve the equation; 4 cos^2 (x) + 7 sin (x) – 7 = 0, giving all answers between 0° and 360°.

4 cos2 (x) + 7sin (x) – 7 = 0      (1)

Using the identity sin2 (x) + cos2 (x) = 1,

rearrange to give; cos2 (x) = 1 - sin2 (x)     (2)

Sub (2) into (1)...

Giving;  4 ( 1 - sin2 (x) ) + 7sin (x) - 7 = 0

Expand brackets; 4 - 4sin2 (x) + 7sin (x) - 7 = 0

Simplify; 7sin (x) - 4sin2 (x) - 3 = 0

Let sin(x) = A and treat as a quadratic;

7A - 4A2 - 3 = 0

- (4A - 3)(A - 1) = 0

4A - 3 = 0 or A - 1 = 0

4A = 3  or A = 1

A = 3/4

However, we already have defined A = sin (x), therefore we must not stop here, but set A = sin (x) and solve for x as follows:

sin (x) = 3/4 or sin (x) = 1

x = sin-1 (3/4) or x = sin-1 (1)

x = 48.6° and (180 - 48.6)° [1] or 90°

x = 48.6° and 131° or 90.0° (to 3 significant figures)

[1]: Note that we take 180° - angle, as for x in sin (x) between 0° and 180° is symmetrical around 90°​. If x was between 180° and 360°, we'd do (360 - x) if 180 < x < 270 and (180 + x) if 270 < x < 360.

CS
Answered by Connor S. Maths tutor

18123 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = e^x + 10sin(4x), find the value of the second derivative of this equation at the point x = pi/4.


y = 2ln(2x + 5) – 3x/2 , x > –2.5 find an equation to the normal of the curve when x = -2


Polynomial long division, how do I do it?


A triangle has sides A, B and C. The side BC has length 20cm, the angle ABC is 50 deg and angle BAC is 68 deg. a) Show that the length of AC is 16.5cm, correct to three significant figures. b) The midpoint of BC is M, hence find the length of AM


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences