How do I integrate ln(x)

This is an integral many people struggle with, but, with a simple trick it becomes a little more straight forward. We will approach this integral using integration by parts.

But what are the parts?

Well, we can write ln(x) as 1ln(x).

We choose u=ln(x) and dv=1, so du=1/x and v=x

So the integral ln(x) becomes:

 xln(x) – integral(x/x)

Which is:

 x*ln(x)- x + c

Which is our final answer.

TM
Answered by Tom M. Maths tutor

5360 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=4x^2+3x+9


Prove that 2Sec(x)Cot(x) is identical to 2Cosec(x)


A general function f(x) has the property f(-x)=-f(x). State a trigonometric function with this property and explain using the Maclaurin series expansion for this function why this property holds. Write down the integral in the limits -q to q of f(x) wrt x


A particle is in equilibrium under the action of four horizontal forces of magnitudes 5 newtons acting vertically upwards ,8 newtons acting 30 degrees from the horizontal towards the left,P newtons acting vertically downwards and Q newtons acting to right


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning