How do I integrate ln(x)

This is an integral many people struggle with, but, with a simple trick it becomes a little more straight forward. We will approach this integral using integration by parts.

But what are the parts?

Well, we can write ln(x) as 1ln(x).

We choose u=ln(x) and dv=1, so du=1/x and v=x

So the integral ln(x) becomes:

 xln(x) – integral(x/x)

Which is:

 x*ln(x)- x + c

Which is our final answer.

Answered by Tom M. Maths tutor

4405 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = x^4 + x^(1/3) + 3, find dy/dx


Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


A curve is defined for x>0 as y = 9 - 6x^2 - 12x^4 . a) Find dy/dx. b) Hence find the coordinates of any stationary points on the curve and classify them.


integrate 1/(x^2+4x+13)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences