Solve simultaneously: x + y + 3 = 0 and y = 2x^2 +3x - 1

First Step:

I believe here it is important to firstly look at each equation on its own and just try to think how the examiner would want you to answer this type of question.

Second Step:

Recognise that both equations have an individual y in them therefore we can use this connection to solve the equation through substitution.

By Substitution we get:

x + 2x^2 + 3x - 1 + 3 = 0

which then simplies to:

2x^2 + 4x + 2  

and then divide everything by 2 gets you:

x^2 + 2x +1 = 0 

Answer:

(x+1)^2 = 0  

x = -1 (repeated root) and y = -2

Answered by Jamie S. Maths tutor

4112 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the most important trig identities we need to know?


Differentiate y = 5x^3 + 7x + 3 with respect to x


Find the values of x for which f(x) is an increasing function given that f(x)=8x-2x^2


Prove algebraically that the sum of the squares of two consecutive multiples of 5 is not a multiple of 10.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences