Solve simultaneously: x + y + 3 = 0 and y = 2x^2 +3x - 1

First Step:

I believe here it is important to firstly look at each equation on its own and just try to think how the examiner would want you to answer this type of question.

Second Step:

Recognise that both equations have an individual y in them therefore we can use this connection to solve the equation through substitution.

By Substitution we get:

x + 2x^2 + 3x - 1 + 3 = 0

which then simplies to:

2x^2 + 4x + 2  

and then divide everything by 2 gets you:

x^2 + 2x +1 = 0 

Answer:

(x+1)^2 = 0  

x = -1 (repeated root) and y = -2

JS
Answered by Jamie S. Maths tutor

4759 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the function y = (x^2)/(3x-1) with respect to x.


f(x)=ln(3x+1), x>0 and g(x)=d/dx(f(x)), x>0, find expressions for f^-1 and g


Use logarithms to solve the equation 2^5x = 3^2x+1 , giving the answer correct to 3 significant figures.


Find the differential of f(x)=y where y=3x^2+2x+4. Hence find the coordinates of the minimum point of f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning