It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5

Firstly, we are given that f(x) can be expressed in the above form, so we write this out:

(19x-2)/((5-x)(1+6x)=A/(5-x)+B/(1+6x)

We then multiply by the denominator of f(x):

19x-2=A(1+6x)+B(5-x)

Now we can choose values of x such that each of the brackets equal 0 to find A and B.

x=5  95-2=31A  A=3

x=-1/6  -31/6=(31/6)B  B=-1

So we can write f(x)=3/(5-x)-1/(1+6x)

Now part ii) we can replace the f(x) in the integral with this:

integral(3/(5-x)-1/(1+6x))

We can separate this into

integral(3/(5-x))-integral(1/(1+6x))

Now we want to make the numerator the derivative of the denominator from the form of the answer we're looking for:

-3integral(-1/(5-x))-(1/6)integral(6/(1+6x))

Which equals

-3ln(5-x)-(1/6)ln(1+6x) 

We can sub the limits straight into this:

-3ln1-(1/6)ln25-(-3ln5-(1/6)ln1))

We know ln1=0 so we have

-(1/6)ln25+3ln5

We can rewrite ln25 as 2ln5 to give

(-1/3)ln5+3ln5= (8/3)ln5

i.e. K=8/3

MW
Answered by Mike W. Maths tutor

6152 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I know if I am using the right particular integral when solving a differential equation


The curve C has equation y = x^3 - 2x^2 - x + 9, x > 0. The point P has coordinates (2, 7). Show that P lies on C.


g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6


A curve has equation (x+y)^2=x*y^2, find the gradient of the curve at a point where x=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning