It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5

Firstly, we are given that f(x) can be expressed in the above form, so we write this out:

(19x-2)/((5-x)(1+6x)=A/(5-x)+B/(1+6x)

We then multiply by the denominator of f(x):

19x-2=A(1+6x)+B(5-x)

Now we can choose values of x such that each of the brackets equal 0 to find A and B.

x=5  95-2=31A  A=3

x=-1/6  -31/6=(31/6)B  B=-1

So we can write f(x)=3/(5-x)-1/(1+6x)

Now part ii) we can replace the f(x) in the integral with this:

integral(3/(5-x)-1/(1+6x))

We can separate this into

integral(3/(5-x))-integral(1/(1+6x))

Now we want to make the numerator the derivative of the denominator from the form of the answer we're looking for:

-3integral(-1/(5-x))-(1/6)integral(6/(1+6x))

Which equals

-3ln(5-x)-(1/6)ln(1+6x) 

We can sub the limits straight into this:

-3ln1-(1/6)ln25-(-3ln5-(1/6)ln1))

We know ln1=0 so we have

-(1/6)ln25+3ln5

We can rewrite ln25 as 2ln5 to give

(-1/3)ln5+3ln5= (8/3)ln5

i.e. K=8/3

Answered by Mike W. Maths tutor

5405 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx for y = x^3*e^x*cos(x)


A stone is thrown from a bridge 10m above water at 30ms^-1 30 degrees above the horizontal. How long does the stone take to strike the water? What is its horizontal displacement at this time?


y=20x-x^2-2x^3. Curve has a stationary point at the point M where x=-2. Find the x coordinate of the other stationary point of the curve and the value of the second derivative of both of these point, hence determining their nature.


Why do the trig addition formulae work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences