if y = (e^x)^7 find dy/dx

To solve the the problem we need to recognize what type of differentiation technique we shall be employing

y = (ex)7

the x unction which we are diferentiating is a power of an exponential function therefore we must employ a substituion method to solve this

if u = ex

therefore y = (u)7

dy/du = 7(u)6

we can say du/dx = ex

therefore dy/dx = dy/du  * du/dx

dy/dx = 7(ex)6 * ex

dy/dx = 7(ex)6​ * ex

dy/dx = 7(ex)7​

GI
Answered by George I. Further Mathematics tutor

3889 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Integrate cos(log(x)) dx


Solve (z-i)+(z+i)+(z-1)+(z-1)


The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi


The complex number -2sqrt(2) + 2sqrt(6)I can be expressed in the form r*exp(iTheta), where r>0 and -pi < theta <= pi. By using the form r*exp(iTheta) solve the equation z^5 = -2sqrt(2) + 2sqrt(6)i.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences