if y = (e^x)^7 find dy/dx

To solve the the problem we need to recognize what type of differentiation technique we shall be employing

y = (ex)7

the x unction which we are diferentiating is a power of an exponential function therefore we must employ a substituion method to solve this

if u = ex

therefore y = (u)7

dy/du = 7(u)6

we can say du/dx = ex

therefore dy/dx = dy/du  * du/dx

dy/dx = 7(ex)6 * ex

dy/dx = 7(ex)6​ * ex

dy/dx = 7(ex)7​

GI
Answered by George I. Further Mathematics tutor

3754 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to the second order differential equation x'' - 2x' + x = e^(2t).


Given sinhx = 0.5(e^x - e^-x), express its inverse, arcsinhx in terms of x.


Show that the matrix A is non-singular for all real values of a


Find, without using a calculator, integral of 1/sqrt(15+2x-x^2) dx, between 3 and 5, giving your answer as a multiple of pi


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences