differentiate y = (4-x)^2

This is a basic example of a very important result: the chain rule. The difficulty of this sort of example is that we have a "function of a function". That is, we have the function '4-x' and then we square this. 

The general approach is as follows. First we will let 'u' be a new function: u=4-x. It is evident that now we have y=u^2 which looks like it might be easier to work with. The chain rule says the following:

dy/dx = (dy/du)*(du/dx)

In this case y=u^2 so, from normal differentiation, we get dy/du = 2u. We also then have u = 4-x. So, again from normal differentiation techniques, we have du/dx=-1.

Using the chain rule gives dy/dx = (2u)*(-1) and if we substitute u=4-x we get

dy/dx = -2(4-x)  = 2x-8    which is the final answer.                                   

Answered by Ben B. Maths tutor

7556 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A Polynomial is defined as X^3-6X^2+11X-6. a)i Use the factor theorem to show that X-3 is a factor. ii Express as a linear and quadratic b)Find the first and second derivative c) Prove there is a maximum at y=0.385 to 3DP


A cricket player is capable of throwing a ball at velocity v. Neglecting air resistance, what angle from the horizontal should they throw at to achieve maximum distance before contact with the ground? How far is that distance?


Solving 2tan(x) - 3sin(x) = 0 for -pi ≤ x < pi


Simple binomial: (1+0.5x)^4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences