differentiate y = (4-x)^2

This is a basic example of a very important result: the chain rule. The difficulty of this sort of example is that we have a "function of a function". That is, we have the function '4-x' and then we square this. 

The general approach is as follows. First we will let 'u' be a new function: u=4-x. It is evident that now we have y=u^2 which looks like it might be easier to work with. The chain rule says the following:

dy/dx = (dy/du)*(du/dx)

In this case y=u^2 so, from normal differentiation, we get dy/du = 2u. We also then have u = 4-x. So, again from normal differentiation techniques, we have du/dx=-1.

Using the chain rule gives dy/dx = (2u)*(-1) and if we substitute u=4-x we get

dy/dx = -2(4-x)  = 2x-8    which is the final answer.                                   

BB
Answered by Ben B. Maths tutor

7736 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x)=xln(x)-x. Find f'(x). Hence or otherwise, evaluate the integral of ln(x^3) between 1 and e.


A curve has equation y = 7 - 2x^5. a) Find dy/dx. b) Find an equation for the tangent to the curve at the point where x=1.


Solve the following equation: x^(3) - 6x^(2) + 11x - 6 = 0


What is the equation of the tangent at the point (2,1) of the curve with equation x^2 + 3x + 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences