Factorise and solve: x^2 - 8x = -15

Step 1: The first step is to rewrite the equation in the form ax2 bx + c = 0. So in this case, we achieve this by adding 15 to both sides:    x2 - 8x + 15 = -15 + 15
                                          x- 8x + 15 = 0

Step 2: Now we need to factorise the equation. To factorise this equation we start with finding two numbers which add up to -8 and multiply to make 15. These numbers must be -5 and -3. So the factorisation of this equation is:                       (x - 5)(x - 3) = 0

Step 3: Finally, we can solve by saying:          
                                           x - 5 = 0 or  x - 3 = 0, so
                                           x = 5 or x = 3  

CHECK:  You can check your two answers, 5 and 3, by subsituting them into the orginal equation, x- 8x = -15.
So firstly for x = 5:              (5)2 - 8(5) =  -15
                                           25   - 40   =  -15
                                                   -15   =  -15 which is clearly true, so we have confirmed that x = 5 is a solution.
We can proceed in exactly the same way for x = 3, and if you try it you will find that it works out and we can confirm that x = 3 is a solution too. 

NEAT ANSWER: Here is an example what you should write in the exam to get full marks:
                                          x2 - 8x = -15
                                          x2 - 8x + 15 = 0
                                         (x - 5)(x - 3) = 0 
                                         So, x = 5 or x = 3

 

Answered by Maisie J. Maths tutor

6189 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand the brackets (2x + 3)(3x - 1)


If a line is in the form y=mx+c why does m give you the gradient of the line


1iii) Solve 7/2x^2+13/4x+1=2


Expand and simplify (3X+9)(X-6)=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences