Factorise and solve: x^2 - 8x = -15

Step 1: The first step is to rewrite the equation in the form ax2 bx + c = 0. So in this case, we achieve this by adding 15 to both sides:    x2 - 8x + 15 = -15 + 15
                                          x- 8x + 15 = 0

Step 2: Now we need to factorise the equation. To factorise this equation we start with finding two numbers which add up to -8 and multiply to make 15. These numbers must be -5 and -3. So the factorisation of this equation is:                       (x - 5)(x - 3) = 0

Step 3: Finally, we can solve by saying:          
                                           x - 5 = 0 or  x - 3 = 0, so
                                           x = 5 or x = 3  

CHECK:  You can check your two answers, 5 and 3, by subsituting them into the orginal equation, x- 8x = -15.
So firstly for x = 5:              (5)2 - 8(5) =  -15
                                           25   - 40   =  -15
                                                   -15   =  -15 which is clearly true, so we have confirmed that x = 5 is a solution.
We can proceed in exactly the same way for x = 3, and if you try it you will find that it works out and we can confirm that x = 3 is a solution too. 

NEAT ANSWER: Here is an example what you should write in the exam to get full marks:
                                          x2 - 8x = -15
                                          x2 - 8x + 15 = 0
                                         (x - 5)(x - 3) = 0 
                                         So, x = 5 or x = 3

 

MJ
Answered by Maisie J. Maths tutor

7019 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Point A has coordinates (1,0) and Point B has coordinates (2,5). Find the angle between the line AB and the x-axis. (3)


Solve the following simultaneous equations: 1) 2x + 7y = 12 2) 4x = 14 - 4y


Solve the simultaneous equations: 4x+5y=13 and 3x-2y=27


Make y the subject of the formula x=(2y-1)/(4-y)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning