Derive from the standard quadratic equation, the form of the quadratic solution

ax2+bx+c=0 : basic quadratic equation

a(x+ bx/a) + c=0  

a((x+b/2a)- b2/4a2) + c=0 (retain equation with only one x variable; compensate for b term squared out with term - b2/4a2, )

a(x+b/2a)2 - b2/4a + c= 0 (a cancels 4ato make 4a)

a(x+b/2a)2 = (b2-4ac)/4a  (rewrite b2/4a - c)

(x+b/2a)2 = (b2-4ac)/4a2

(x+b/2a) = +/-(rootof(b2-4ac))/2a  (square root gives +/- answers

x= (-b +/- (rootof(b2-4ac)))/2a  (x term singled out and the quadratic soln is written)

 

JD
Answered by Jaiveer D. Maths tutor

6342 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following equation: x^3 + 8x^2 + 4x - 48=0


Given y = 2x(x^2 – 1)^5, show that dy/dx = g(x)(x^2 – 1)^4 where g(x) is a function to be determined.


Find the coordinates of the stationary points for the curve y = x^4 - 2*x^2 + 5.


Given that y=4x^3-(5/x^2) what is dy/dx in it's simplest form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning