How do you integrate (sinx)^2?

(sinx)^2 (similarly to (cosx)^2) cannot be integrated in this form. There is a standard method to get past this though, which makes use of the cos double angle formula:cos(2x) = (cosx)^2 - (sinx)^2        = 1 - (sinx)^2 - (sinx)^2        = 1 - 2(sinx)^22(sinx)^2 = 1 - cos(2x) (sinx)^2 = 1/2 - (1/2)cos(2x)So the integral of '(sinx)^2' can instead be seen as the integral of '1/2 - (1/2)cos(2x)'.This is a much easier integral to work out, and using our knowledge of integrating (the integral of cos(2x) is (1/2)sin(2x)) the answer is:(1/2)x - (1/4)sin(2x) + cAs the integration here is indefinite (without limits) the constant of integration must be present (+c).This is a method which is very specific to sinx and cosx, specifically when they are put to even powers.

Answered by Will W. Maths tutor

33297 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express cos(2x) in terms of acos^2(x) + b


What are radians, why can't we just use degrees?


A curve has parametric equations -> x = 2cos(2t), y = 6sin(t). Find the gradient of the curve at t = π/3.


b) The tangent to C at P meets the coordinate axes at the points Q and R. Show that the area of the triangle OQR, where O is the origin, is 9/(3-e)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences