A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.

At first glance, this looks quite tricky, as usually when we are asked to find dy/dx, we have one equation, but here we have 2.So in this case, we need to use the statement that dy/dx = (dy/dt) * (dt/dx)Then, we just need to find dy/dt and dy/dx.dy/dt = -2/t^2dx/dt = -4, and therefore dt/dx = -1/4So, (dy/dt)(dt/dx) = (-2/t^2)(-1/4)= 1/2t^2.

WM
Answered by Wesley M. Maths tutor

10733 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 2x^3 + 15x^2 + 24x + 10 Find the stationary points on this curve and determine their nature


Differentiate x^(1/2)ln(3x) with respect to x.


How do you complete the square?


Given that y = (3x^4 + x)^5, find dy/dx using the chain rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning