What is the integral of (cos(x))^2?

cos(2x) = 2cos2(x)-1 by the double angle formula.

Rearrange to give cos2(x) = (cos(2x)+1)/2

Integrating this gives sin(2x)/4 + 1/4x + c 

Answered by Max C. Maths tutor

5211 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express '6cos(2x) +sin(x)' in terms of sin(x).


Differentiate with respect to x: F(x)=(x^2+1)^2


A circle has equation: (x - 2)^2 + (y - 2)^2 = 16. It intersects the y-axis (y > 0) at point P and the x-axis (x < 0) at point Q. Find the equation of the line connecting P and Q and of the line perpendicular to PQ passing through the circle's centre.


Find the integral of sin^2(X)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences