A motorist traveling at 10m/s, was able to bring his car to rest in a distance of 10m. If he had been traveling at 30m/s, in what distance could he bring his cart to rest using the same breaking force?

By just a quick look you might be tempted to say 30 m. However the key information is that the breaking force is the same. We can calculate the deceleration of the car when at 10m/s using the equation of motion:

v2=u2+2as (1),

where u is the initial velocity= 10 m/s, v the final velocity which is zero since it stops, s displacement and a acceleration. By substituting the values you end up with an acceleration a= -5 m/s2. In order to find the force of the car, we use the equation

F=ma (Newton's Second Law) (2),

where F is the  breaking force, m is the mass of the car and a is the acceleration(here deceleration). Thus, F= 5m N. However since the mass of the car doesn't change when it travels at 30 m/s and the force is the same, deceleration is the same too. Using the same equation of motion (1), with values u=30m/s, v=0m/s, a=5m/s2 we find that s=90 m which is the distance travelled before the car comes to a stop.

CT
Answered by Charis T. Physics tutor

20295 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Calculating the hydrostatic force on a submerged body


Explain what is meant by the mass defect of an atomic nucleui


An unknown capacitor is charged to 6v, its maximum value, then discharged through a 1k ohm resistor. If the capacitor voltage is 3v, 0.3 seconds after starting to discharge, what is the capacitance of the unknown capacitor?


A spacecraft needs to be slowed down from a speed of 96m/s to 8.2m/s. This can be done by firing an object as the spacecraft is moving. If the mass of the spacecraft is 6730kg and the object is 50kg, calculate the velocity of the ejected object.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences