A motorist traveling at 10m/s, was able to bring his car to rest in a distance of 10m. If he had been traveling at 30m/s, in what distance could he bring his cart to rest using the same breaking force?

By just a quick look you might be tempted to say 30 m. However the key information is that the breaking force is the same. We can calculate the deceleration of the car when at 10m/s using the equation of motion:

v2=u2+2as (1),

where u is the initial velocity= 10 m/s, v the final velocity which is zero since it stops, s displacement and a acceleration. By substituting the values you end up with an acceleration a= -5 m/s2. In order to find the force of the car, we use the equation

F=ma (Newton's Second Law) (2),

where F is the  breaking force, m is the mass of the car and a is the acceleration(here deceleration). Thus, F= 5m N. However since the mass of the car doesn't change when it travels at 30 m/s and the force is the same, deceleration is the same too. Using the same equation of motion (1), with values u=30m/s, v=0m/s, a=5m/s2 we find that s=90 m which is the distance travelled before the car comes to a stop.

Answered by Charis T. Physics tutor

20156 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Given the Earth orbits the Sun at a distance of 1.49*10^11m with Me = 5.97*10^24kg and Msolar = 1.99*10^30, what is the gravitational force between the Earth and Sun?


Describe how a stationary wave is formed and some of its properties.


Describe and explain the life cycle of a star?


Two balls with the same kinetic energy have mass of ball a = m and ball b = 2m. What is the ratio of their momentums: a/b?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences