A motorist traveling at 10m/s, was able to bring his car to rest in a distance of 10m. If he had been traveling at 30m/s, in what distance could he bring his cart to rest using the same breaking force?

By just a quick look you might be tempted to say 30 m. However the key information is that the breaking force is the same. We can calculate the deceleration of the car when at 10m/s using the equation of motion:

v2=u2+2as (1),

where u is the initial velocity= 10 m/s, v the final velocity which is zero since it stops, s displacement and a acceleration. By substituting the values you end up with an acceleration a= -5 m/s2. In order to find the force of the car, we use the equation

F=ma (Newton's Second Law) (2),

where F is the  breaking force, m is the mass of the car and a is the acceleration(here deceleration). Thus, F= 5m N. However since the mass of the car doesn't change when it travels at 30 m/s and the force is the same, deceleration is the same too. Using the same equation of motion (1), with values u=30m/s, v=0m/s, a=5m/s2 we find that s=90 m which is the distance travelled before the car comes to a stop.

CT
Answered by Charis T. Physics tutor

21557 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the minimum height of a hill, so a ball of mass m falling from it can go through a loop of radius R?


Two current carrying wires are placed next to each other and anti-parallel currents are allowed to flow. Is the magnetic force between the wires attractive or repulsive?


A block of ice slides down the full height from one side of a 1m high bowl and up the other side. Assuming frictionless motion and taking g as 9.81ms-2, find the speed of the block at the bottom of the bowl and the height it reaches on the the other side.


A child is standing on a walkway that is moving at 2 metres per second and decides to turn around and walk back to the start at 2 metres per second. Explain why the child cannot reach the start of the walkway at this speed.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning