How to differentiate using the Product Rule

The Product Rule is used when differentiating two functions that are being multiplied together. It can be used by multiplying each function by the derivative of the other and adding.  

If y=uv then

dy/dx= udv/dx + vdu/dx  

To illustrate this rule look at the example below: 

y=x2e3x

u=x2  v=e3x      du/dx= 2x    dv/dx= 3e3x

Therefore dy/dx= (x2)(3e3x)+ (e3x)(2x)  

               dy/dx= 3x2e3x + 2xe3x 

Answered by Callum M. Maths tutor

4445 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A pot of water is heated to 100C and then placed in a room at a temperature of 18C. After 5 minutes, the pan temperature falls by 20C. Find the temperature after 10minutes.


Prove why the quadratic formula works


The straight line with equation y=3x-7 does not cross or touch the curve with equation y=2px^2-6px+4p, where p is a constant.(a) Show that 4p^2-20p+9<0 (b) Hence find the set of possible values for p.


Use the product rule to differentiate y=2xsinx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences