How to differentiate using the Product Rule

The Product Rule is used when differentiating two functions that are being multiplied together. It can be used by multiplying each function by the derivative of the other and adding.  

If y=uv then

dy/dx= udv/dx + vdu/dx  

To illustrate this rule look at the example below: 

y=x2e3x

u=x2  v=e3x      du/dx= 2x    dv/dx= 3e3x

Therefore dy/dx= (x2)(3e3x)+ (e3x)(2x)  

               dy/dx= 3x2e3x + 2xe3x 

CM
Answered by Callum M. Maths tutor

4766 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the co-ordinates of a stationary point of a given line and determine whether it is a minimum or a maximum point?


How do I integrate cos^2x with respect to x?


If y=2x+4x^3+3x^4 and z=(1+x)^2, find dy/dx and dz/dx.


Supposing y = arcsin(x), find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences