How to differentiate using the Product Rule

The Product Rule is used when differentiating two functions that are being multiplied together. It can be used by multiplying each function by the derivative of the other and adding.  

If y=uv then

dy/dx= udv/dx + vdu/dx  

To illustrate this rule look at the example below: 

y=x2e3x

u=x2  v=e3x      du/dx= 2x    dv/dx= 3e3x

Therefore dy/dx= (x2)(3e3x)+ (e3x)(2x)  

               dy/dx= 3x2e3x + 2xe3x 

Answered by Callum M. Maths tutor

4107 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y=x^3-4x^2+2 at the point (3,-7)


State the trigonometric identities for sin2x, cos2x and tan2x


How can I determine the characteristics of a curve on an x-y set of axis (eg. points of intersection, stationary points, area under graph)?


At time t = 0, a particle is projected vertically upwards with speed u m s–1 from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s–1. Find the value of u and T and evaluate the model. (AS mechanics)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences