How to find the coordinates of the turning points of a curve on a graph

The turning point of a curve occurs when the gradient of the line = 0The differential equation (dy/dx) equals the gradient of a line. Therefore in this case the differential equation will equal 0.dy/dx = 0Let's work through an example. If the equation of a line = y =x+2xTherefore the differential equation will equaldy/dx = 2x +2therefore because dy/dx = 0 at the turning point then2x+2 = 0Therefore:2x+2 = 02x= -2x=-1 This is the x- coordinate of the turning pointYou can then sub this into the main equation (y=x2+2x) to find the y-coordinate. So if x = -1:y = (-1)2+2(-1)y = (1) +( - 2)y = 3This is the y-coordinate of the turning pointTherefore the coordinates of the turning point are x=-1, y =3= (-1,3)

CG
Answered by Charlotte G. Maths tutor

96277 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The formula v = u +at gives the final velocity of an object as it accelerates. If v= 35, a=4 and t=5 then find u


Re-arrange [4x+ 9t + 8s= 3g] to make x the subject of the formula


Solve (x+2)/3x + (x-2)/2x = 3


What is 2 1/5 + 1 3/4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences