The triangle ABC is such that AC=8cm, CB=12cm, angle ACB=x radians. The area of triangle ABC = 20cm^2. Show that x=0.430 (3sf)

From the equation of the area of a triangle,
Area = 1/2 ACCBsin(C)
20 = 1/2 * 8 *12 * sin(x) 
=> sin(x) = 0.416666...
=> x = 0.430 to 3sf

LD
Answered by Laura D. Maths tutor

7310 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.


Find the indefinite integral of f(x)=(1-x^2)/(1+x^2)


Find the indefinite integral of x^8*ln(3x) using integration by parts


Integrate xsin(2x) by dx between the limits 0 and pi/2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning