The triangle ABC is such that AC=8cm, CB=12cm, angle ACB=x radians. The area of triangle ABC = 20cm^2. Show that x=0.430 (3sf)

From the equation of the area of a triangle,
Area = 1/2 ACCBsin(C)
20 = 1/2 * 8 *12 * sin(x) 
=> sin(x) = 0.416666...
=> x = 0.430 to 3sf

Answered by Laura D. Maths tutor

6548 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is an easy way to remember how sin(x) and cos(x) are differentiated and integrated?


The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line with the equation y = mx + c. Find the value of m.


Find two values of k, such that the line y = kx + 2 is tangent to the curve y = x^2 + 4x + 3


What is a derivative and how do we calculate it from first principles?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences