N = 2A + B. A is a two-digit square number. B is a two-digit cube number. What is the smallest possible value of N?

A is a 2-digit square number. In order to find the smallest N number we want to find the smallest possible 2-digit sqaure number. To sqaure a number means to multiply this number by itself, e.g. the square number of 2 is 4 as 2x2=4. Instead of writing 2x2 we write 22. Hence, 1 squared equals 1 (12=1); 22=4; 32=9; 42=16, therefore the smallest square number is 16, so A=16

B is a 2-digit cube number. Again, in order to find the smallest N number we want to find the smallest possible 2 -digit cube number. To find the cube number, we multiply a given number by itself 3 times, e.g. the cube bumber of 2 is 8 as 2x2x2=8. If we follow the same logic, 1 cubed equals 1 (13=1); 23=8; 33=27, therefore the smallest cubed number is 27, so B=27.

N=2A + B; if we substitue A with 16 and B with 27, we get N=2x16 + 27, therefore N=59

Answered by Silvia K. Maths tutor

7161 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Edexcel, 2016, Foundation Maths GCSE: A running club has 50 members. 30 members take part in road races, 15 members take part in fell races, 12 members do not run in road or fell races. How many members run both fell and road races?


Solve the simultaneous equations: 3x+4y=19, x-6y= -23.


Solve the simultaneous equations: 4X+6Y=4 and 7X+5Y=12.5


Please solve the following simultaneous equations 4x + 7y = 336 y = 6x + 2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences