Solve the following simultaneous equations: 4x + y = 14 and 6x - y = 16

First, write out the equations beneath each other:

4x + y = 14

6x - y = 16

 

Then, label the equations a and b (let's take the top one as a, and the bottom one as b)

We always look to eliminate either the x term, or the y term

Equation b + equation a would elimate the y term. i.e. -y = -1y; so, -1+1=0

Now, add the two equations together:

10x=30

Then, simplify to find out the value of a single x

x = (30/10); x = 3

 

Then, we substitute our x value into either of the equations, to work out y. 

Let's do it with equation a:

4(3) + y = 14

12 + y = 14; y= 14-12; y=2

 

We can check by putting both the x and y values into equation b to check it works:

6(3) - 2 = 16

18-2= 16

It works!!

Answered by Rebecca S. Maths tutor

6493 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve ((x+2)/3x) + ((x-2)/2x) = 3


Tom thinks of a number. He squares it, adds 3 times the original number and then subtracts 18. The result is 0. What two numbers could Tom have been thinking of?


How can I work out the area of a semi-circle with a diameter of 12cm?


Paul travels from Rye to Eston at an average speed of 90 km/h. He travels for T hours. Mary makes the same journey at an average speed of 70 km/h. She travels for 1 hour longer than Paul. Work out the value of T


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences