How do you solve quadratic and linear simultaneous equations?

For two linear simultaneous equations, two algebraic methods can be used to find solutions.The first is elimination, which is usually a lot quicker. Elimination involves subtracting one equation form the other to eliminate one variable. For example, given equations:

(1) x+y=4

(2) 2x+3y=5

Currently, no variables can be immediately eliminated, as subtracting y from 3y will give a remainder of 2y, and subtracting x form 2x will give a remainder of x. To overcome this, equation (1) can be rewritten as:

(1) 2x+2y=8

(multiplying both sides of the equation by 2 keeps the equation true)

Our new pair of equations is 

(1) 2x+2y=8
(2) 2x+3y=5

Subtracting equation (1) from (2) we obtain:

(2x+3y)-(2x+2y)=5-8

Therefore

y=-3

as we know x+y=4 we can substitute in our y value to obtain the equation

x-3=4, giving x=7

The alternate method is substitution, the involves making one variable the subject of one equation, then substitution the expression for that value into the other equation, for example.

(1) x+y=4 

(2) 2x+3y=5
making x the subject of equation (1) x=(4-y)

This expression then can be substituted for x in equation (2) giving

2(4-y)+3y=5, which simplifies to:

y=-3, which can again be substituted into either equation to find x=7

For non-linear equations, where both variables have a different power from what they have in the other equation, substitution is the only viable algebraic method.

For instance:

(1) x2+y2=9

(2) x+y=2

Elimination does not work here, as an x or y cannot be eliminated from an x2 or y2 by multiplying by a constance factor. (no Ax2-Bx=0 for all x)

Therefore substitution must be used, it is easier to use the linear equation for substitution, so I will make y the subject of (2) giving

y=2-x

Substituting this expression for y into equation (1) gives:

x2+(2-x)2=9
expanding:
x2+4-4x+x2=9
collecting terms
2x2-4x-5=0
simplifying:

x2-2x-2.5=0

using the quadratic formula this gives us the solution

x=1±√(14)/2 and substituting back into (2) gives us solution y=1∓√(14)/2




 

JA
Answered by Jack A. Maths tutor

9510 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the coordinates of the turning point of the curve y=x^2+3x+7


A class has 30 students. The mean height of the 14 boys is 1.52m. The mean height of all the students is 1.48m. Work out the mean height of the girls.


Solve the equation 2X^2 + 5X + 2 = 0 stating clearly the number of roots


Solve 4x + 6 = 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning