Solve the simultaneous equations: 3x+5y=3 and 6x+6y=10

(1): 3x+5y=3

(2): 6x+6y=10

Multiply number one by two to give a common factor of 6x in both equations.

(3)=[2*(1)]- 6x+10y=6

Take away equation (2) from equation (3) to leave us with only y's and numbers so that we can solve a value of y.

(3)-(2): 4y=-4

Divide both sides by 4

y=-1

With this value sub back into an original equation wherever there is a y, this does not matter if you choose (1) or (2) as it will give you the same value.

(1): 3x+5y=3

(1): 3x+5(-1)=3

(1): 3x-5=3

(1): 3x=8

(1): x=8/3

(1): x=2.66666666

(1): x=2.67

Final values

y=-1; x=8/3 or 2.67

EO
Answered by Ethan O. Maths tutor

4466 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations y = 2x-3 and x^2 +y^2 = 2


What is the solution to x^2 + 5x - 7 = 0


A is the point (2,-5), B is the point (-1,4). (a) What is the gradient of the line passing through points A and B? (b) Does the point (-100,301) lie on the line passing through points A and B?


If L1 is y = 3x + 15 and L2 is 3y + 20 = 9x show whether or not L1 and L2 are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning