For the curve f(x) = 2x^3 - 54x, find the stationary points and state the nature of these points

Firstly, find the values of x where f'(x) = 0

f'(x) = 6x2 - 54

6x2 - 54 = 0

6(x+3)(x-3) = 0

x = 3, y = -108 and x = -3, y = 108

Next, find the values of f''(x) at these points

f''(x) = 12x

When x = 3, f''(x) = 36 which is positive and therefore (3,-108) is a minima.

When x = -3, f''(x) = -36 which is negetive and therefroe (-3,108) is a maxima.

RW
Answered by Ruby W. Maths tutor

4655 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following simultaneous equations y + 4x + 1 = 0, y^2 + 5x^2 + 2x = 0


Compute the indefinite integral of x^8 ln(3x)dx


Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1


An object of mass 2kg is placed on a smooth plane which is inclined at an angle of 30 degrees from the ground. Calculate the acceleration of the object.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning