For the curve f(x) = 2x^3 - 54x, find the stationary points and state the nature of these points

Firstly, find the values of x where f'(x) = 0

f'(x) = 6x2 - 54

6x2 - 54 = 0

6(x+3)(x-3) = 0

x = 3, y = -108 and x = -3, y = 108

Next, find the values of f''(x) at these points

f''(x) = 12x

When x = 3, f''(x) = 36 which is positive and therefore (3,-108) is a minima.

When x = -3, f''(x) = -36 which is negetive and therefroe (-3,108) is a maxima.

RW
Answered by Ruby W. Maths tutor

4627 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I find the approximate area enclosed by the expression e^x*sin(x)*x^3 on an infinite scale?


Find the gradient of the line 4x+9y=10.


Solve the following pair of simultaneous equations: 2x - y = 7 and 4x + y = 23


Find the gradient of a straight line with the points P(5,3) and Q(8,12)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning