For the curve f(x) = 2x^3 - 54x, find the stationary points and state the nature of these points

Firstly, find the values of x where f'(x) = 0

f'(x) = 6x2 - 54

6x2 - 54 = 0

6(x+3)(x-3) = 0

x = 3, y = -108 and x = -3, y = 108

Next, find the values of f''(x) at these points

f''(x) = 12x

When x = 3, f''(x) = 36 which is positive and therefore (3,-108) is a minima.

When x = -3, f''(x) = -36 which is negetive and therefroe (-3,108) is a maxima.

RW
Answered by Ruby W. Maths tutor

4568 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does integration by parts work?


How do you know when to integrate by parts?


A Polynomial is defined as X^3-6X^2+11X-6. a)i Use the factor theorem to show that X-3 is a factor. ii Express as a linear and quadratic b)Find the first and second derivative c) Prove there is a maximum at y=0.385 to 3DP


Express 6cos(2x)+sin(x) in terms of sin(x). Hence solve the equation 6cos(2x) + sin(x) = 0, for 0° <= x <= 360°.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning