A supertanker of mass 4.0 × 10^8 kg, cruising at an initial speed of 4.5 m s^(–1), takes one hour to come to rest. Assume the force slowing down the tanker is constant.

From newton's first law, an object remains in its inertial frame until a force acts upon it. This means that according to a stationary observer, the object will remain at rest or continue moving at the same velocity in the same direction until a force acts upon it. From Newton's second law we know that the force is equal to the mass (not weight) times the acceleration. The supertanker therefor goes from an initial velocity v0 = 4.5m/s to vf = 0 in one hour (3600s). The acceleration is defined as the change in velocity over time a = (v0 - vf)/t. As we all the variables on the right hand side of the equation we can solve for a = 4.5/(3600) = 0.00125 m/s2. We then use this value to calculate the braking force: F = m*a = 1.25 x (10^-3) x 4 x (10^+8) = 5 x (10^5) N.

JC
Answered by Jack C. Physics tutor

10873 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An isotope of 238,92-Uranium decays into a stable isotope of 206,82-Lead through a series of alpha and beta decays, how many of each does it go through?


An object is let in free fall from a platform 20m high above Earth's surface. Describe the event in terms of energy and thus determine the speed of the object when it hits ground. Air resistance is negligible and gravitational acceleration is constant.


Can you please explain the significance of photoelectric effect?


A circuit with a voltage source of 18V, has 3 resistors all connected on parallel, values at 2ohms, 6ohms and 7.5ohms. Find the total circuit resistance, and then subsequently, the total current supplied and power dissipated in the curcuit.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning