A supertanker of mass 4.0 × 10^8 kg, cruising at an initial speed of 4.5 m s^(–1), takes one hour to come to rest. Assume the force slowing down the tanker is constant.

From newton's first law, an object remains in its inertial frame until a force acts upon it. This means that according to a stationary observer, the object will remain at rest or continue moving at the same velocity in the same direction until a force acts upon it. From Newton's second law we know that the force is equal to the mass (not weight) times the acceleration. The supertanker therefor goes from an initial velocity v0 = 4.5m/s to vf = 0 in one hour (3600s). The acceleration is defined as the change in velocity over time a = (v0 - vf)/t. As we all the variables on the right hand side of the equation we can solve for a = 4.5/(3600) = 0.00125 m/s2. We then use this value to calculate the braking force: F = m*a = 1.25 x (10^-3) x 4 x (10^+8) = 5 x (10^5) N.

Answered by Jack C. Physics tutor

10015 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do you work out the work out the current through resistors in parallel?


A light wave has a wavelength of 420nm, calculate the energy of this wave in joules.


Describe and explain the photoelectric effect (6 marks)


One of the decays of potassium (A=40, Z=19) results in an excited argon atom with excess energy of 1.50 Mev. In order to be stable, it emits a gamma photon. What frequency and wavelength has this gamma photon?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences