What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?

First simplify the expression; 3x^(2)-3 to get;

[(x+1)/3(x^(2)-1)] - [1/(3x+1)] 

Using the fact that x^(2)-1 is the difference of two squares, we can simplify it to;

[(x+1)/3(x+1)(x-1)] - [1/(3x+1)] 

which simplifies to;

[1/3(x-1)] - [1/(3x+1)] 

finally adding the two gives

 4/3(x-1)(3x+1) 

Answered by Francis Odhiambo O. Maths tutor

9424 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y = 2x(x2 – 1)5, show that (a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined. (b) Hence find the set of values of x for which dy/dx > 0


a) Differentiate and b) integrate f(x)=xcos(2x) with respect to x


The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.


How do I solve a cubic?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences