What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?

First simplify the expression; 3x^(2)-3 to get;

[(x+1)/3(x^(2)-1)] - [1/(3x+1)] 

Using the fact that x^(2)-1 is the difference of two squares, we can simplify it to;

[(x+1)/3(x+1)(x-1)] - [1/(3x+1)] 

which simplifies to;

[1/3(x-1)] - [1/(3x+1)] 

finally adding the two gives

 4/3(x-1)(3x+1) 

FO
Answered by Francis Odhiambo O. Maths tutor

10090 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to perform integration by substitution. (e.g. Find the integral of (2x)/((4+(3(x^2)))^2)) (10 marks)


Find D when 8x^3-12x^2-2x+D is divided by 2x+1 when the remainder is -2


What is y' when y=3xsinx?


Calculate the shaded finite region between the curve and the axis for the curve: 3x^2 +11x -4 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning