If n is an integer such that n>1 and f(x)=(sin(n*x))^n, what is f'(x)?

Let us denote sin(nx) = u(x), where u is a function of x. The equation is now therefore f(x) =(u(x))^n.

For simplicity, we will write that as f(x) = u^n

By the chain rule, we know that f'(x) = df/dx = (df/du)*(du/dx).

Firstly computing df/du, we find df/du = n*u^(n-1)

Now we need to find du/dx. Since u = sin(nx) , du/dx = ncos(nx).

Therefore, our answer is f'(x) = (df/du)(du/dx) = nu^(n-1)*ncos(nx), 

subbing in u = sin(nx) yields the final answer:

f'(x) = n(sin(nx))^(n-1)*ncos(nx)

Answered by Noam T. Maths tutor

4042 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = ln (x+1) sin x , find dy/dx


Prove that sqrt(2) is irrational


Find the coordinates of the centre of the circle with equation: x^2 + y^2 − 2*x + 14*y = 0


A particle of mass m is placed on an slope with an incline 30 degrees. Once released it accelerates down the line of greatest slope at 2 m s^-2. What is the coefficient of friction between the particle and the slope?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences