What is the gradient of the function f(x) = 2x^2 + 3x - 7 at the point where x = -2?

To work out the gradient of a function f(x), we need to differentiate it with respect to x, to give us f'(x). If x = a at a point, then the gradient of f(x) at that point is f'(a) (substitute a in place of x in the equation). Each term of f(x) can be differentiated separately (one at a time) to give f'(x).

If another function g(x) = xn, the differential of the function g'(x) = nxn-1. We can apply this to our function f(x) by writing the power of x in each term (to make it easier).

f(x) = 2x2 + 3x1 -7x0

f'(x) = 22x1 + 31x0 -7*0x-1

f'(x) = 4x + 3

We then substitute our value of x into f'(x). x = -2, therefore f'(-2) = 4*-2 + 3 = -5.

The gradient of f(x) at x = -2 is -5.

Answered by Jake J. Maths tutor

10326 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does the constant disappear when differentiating a function?


find dy/dx when y=x^3 + sin2x


A block mass m lies on an incline rough plane, with coefficient of friction µ. The angle of the block is increased slowly, calculate the maximum angle of the slope that can be achieved without the block slipping.


What is the turning point on the curve f(x) = 2x^2 - 2x + 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences