What is the gradient of the function f(x) = 2x^2 + 3x - 7 at the point where x = -2?

To work out the gradient of a function f(x), we need to differentiate it with respect to x, to give us f'(x). If x = a at a point, then the gradient of f(x) at that point is f'(a) (substitute a in place of x in the equation). Each term of f(x) can be differentiated separately (one at a time) to give f'(x).

If another function g(x) = xn, the differential of the function g'(x) = nxn-1. We can apply this to our function f(x) by writing the power of x in each term (to make it easier).

f(x) = 2x2 + 3x1 -7x0

f'(x) = 22x1 + 31x0 -7*0x-1

f'(x) = 4x + 3

We then substitute our value of x into f'(x). x = -2, therefore f'(-2) = 4*-2 + 3 = -5.

The gradient of f(x) at x = -2 is -5.

Answered by Jake J. Maths tutor

9051 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate "sin(2x)"


Use the binomial series to find the expansion of 1/(2+5x)^3 in ascending powers of x up to x^3 (|x|<2/5)


Given that dy/dx=6-8x+x^4 and that x=1 when y=4. Find an expression for y in terms of x.


Differentiate expressions of form Ax^b where A and b are constants and x is a variable


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences