Rearranging formulae

Rearrange 1/u + 1/v = 1/f

to make u the subject of the formula. Give your answer in its simplest form.

There are a number of ways to approach this problem.

By subtracting 1/v on both sides we get 1/u as the subject of the equation:

1/u = 1/f - 1/v

The inverse of the equation can be found to make the subject u:

u = 1/(1/f - 1/v)

This can be simplified by multiplying by fv/fv:

u(fv/fv) = fv/(fv/f - fv/v)

As fv/fv is equal to one, this can be simplified further to give the final answer:

u = fv/(v-f)

RS
Answered by Robert S. Maths tutor

12868 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the multiple of an even number and an odd number is always even.


Write 8^2(4^2 / 2^7) in the form 2^x


A rectangle has the length of (2x + 5) and the width of (3x - 2). The perimeter of the rectangle is 36cm. Find the length and width of this rectangle.


The equation of the line L1 is y = 3x – 2. The equation of the line L2 is 3y – 9x + 5 = 0. Show that these two lines are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning