Solve the differential equation: e^(2y) * (dy/dx) + tan(x) = 0, given that y = 0 when x = 0. Give your answer in the form y = f(x).

This is a question taken from a core 4 paper and is a typical example of a differential equation question.

The first thing to notice about this equation is that it is "separable", meaning we can rearrange it to get 

e^(2y) dy = - tan(x) dx

Now we can solve this by integrating both sides. We know how to integrate the left hand side, and we get (1/2)e^(2y), but how can we integrate -tan(x)?

To see how we can do this, we write

-tan(x) = -sin(x) / cos(x)

Then, we realise that the numerator is the derivative of the denominator, and so integrating -tan(x) gives ln(|cos(x)|) + C, where C is the constant of integration. 

So, we now have that

(1/2)e^(2y) = ln(|cos(x)|) + C

Now we apply the condition that y(x=0) = 0, giving

1/2 = C

Subbing this in, we have

(1/2)e^(2y) = ln(|cos(x)|) + 1/2

Therefore 

e^(2y) = 2ln(|cos(x)|) + 1

The question asked for the answer to be written in the form y = f(x), and so we need to get the y out of the exponent, which we can do by taking ln of both sides to give

2y = ln( 1 + 2ln(|cos(x)|)  )

And so the final answer is

y = (1/2) ln( 1 + 2ln(|cos(x)|) )

DD
Answered by Dominic D. Maths tutor

11283 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A uniform ladder is leaning against a smooth wall on a rough ground. The ladder has a mass of 10 kilograms and is 4 metres long. If the ladder is in equilibrium, state an equation for the coefficient of friction of the ground


How to do the chain rule.


How do you differentiate?


Integrate tan (x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences