Solve the differential equation: e^(2y) * (dy/dx) + tan(x) = 0, given that y = 0 when x = 0. Give your answer in the form y = f(x).

This is a question taken from a core 4 paper and is a typical example of a differential equation question.

The first thing to notice about this equation is that it is "separable", meaning we can rearrange it to get 

e^(2y) dy = - tan(x) dx

Now we can solve this by integrating both sides. We know how to integrate the left hand side, and we get (1/2)e^(2y), but how can we integrate -tan(x)?

To see how we can do this, we write

-tan(x) = -sin(x) / cos(x)

Then, we realise that the numerator is the derivative of the denominator, and so integrating -tan(x) gives ln(|cos(x)|) + C, where C is the constant of integration. 

So, we now have that

(1/2)e^(2y) = ln(|cos(x)|) + C

Now we apply the condition that y(x=0) = 0, giving

1/2 = C

Subbing this in, we have

(1/2)e^(2y) = ln(|cos(x)|) + 1/2

Therefore 

e^(2y) = 2ln(|cos(x)|) + 1

The question asked for the answer to be written in the form y = f(x), and so we need to get the y out of the exponent, which we can do by taking ln of both sides to give

2y = ln( 1 + 2ln(|cos(x)|)  )

And so the final answer is

y = (1/2) ln( 1 + 2ln(|cos(x)|) )

DD
Answered by Dominic D. Maths tutor

11552 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the vertex coordinates of parabola y = 2x^2 - 4x + 1


Which A-level modules did you take?


g(x) = x/(x+3) + 3(2x+1)/(x^2 +x - 6) a)Show that g(x) =(x+1)/(x-2), x>3 b)Find the range of g c)Find the exact value of a for which g(a)=g^(-1)(a).


What is 'grouping' and how does it work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning