Show that the derivative of ln(x) = 1/x

We can start by letting y = ln(x)

What we are trying to show is that dy/dx = 1/x

Since y = ln(x), then e= eln(x) = x

Taking the derivative of each side of this equation will give us ey.dy/dx = 1

If we divide each side of this new equation by ethen we have that dy/dx = 1/ey = 1/x as required.

JC
Answered by James C. Maths tutor

8300 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y= sqrt(x) + 4/sqrt(x) + 4 , find dy/dx when x=8 giving your answer in form Asqrt(2) where A is a rational number.


What is a derivative?


Integrate x * sin(x) with respect to x by using integration by parts


Find the integral of 1/(x-5) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences