Show that the derivative of ln(x) = 1/x

We can start by letting y = ln(x)

What we are trying to show is that dy/dx = 1/x

Since y = ln(x), then e= eln(x) = x

Taking the derivative of each side of this equation will give us ey.dy/dx = 1

If we divide each side of this new equation by ethen we have that dy/dx = 1/ey = 1/x as required.

Answered by James C. Maths tutor

7298 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the value of x in (4^5⋅x+32^2)⋅2^5=2^16⋅x


integrate e^x sin x dx


The functions f and g are defined by f : x → 2x + ln 2, g : x → e^(2x). Find the composite function gf, sketch its graph and find its range.


Solve the following simultaneous equations y + 4x + 1 = 0, y^2 + 5x^2 + 2x = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences