Solve the simultaneous equations: 2x-3y = 24 and 6x+2y = -5

There are numerous alternative ways to solve these simultaneous equations. For this problem, one of the simplest methods is to multiply the first equation by 3, so that we get 6x in both equations:

(2x - 3y)3 = 243, giving 6x - 9y = 72

If we now subtract the second equation from the first one (multiplied by 3), we get:

(6x - 9y) - (6x + 2y) = 72-(-5)

This way we are left only with y on the left hand side:

-9y - 2y = 77

-11y = 77

Thus we found the value of y:

y = -77/11 = -7

Now we can substitute the value for y into the first equation and find x (substituting into the 2nd equation would also work fine):

2x - 3(-7) = 24

2x + 21 = 24

2x = 3

x = 3/2

Therefore, the solution is: x = 3/2 and y= -7

AS
Answered by Augustinas S. Maths tutor

4114 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

James has a short drive to his garage which he wishes to pave with a single layer of bricks. If his square drive has side length 2m and James buys the bricks in stacks of 10 with each brick being 0.2m long and half as wide how many stacks must James buy?


How do I find out the equation of a line?


Solve the simultaneous equations 3x + 4y = 17 and 4x + y = 14


How can you expand brackets? e.g: (x-4)(x+7)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning