An ideal gas at a temperature of 22 C is trapped in a metal cylinder of volume 0.2 m^3 at a pressure of 1.6x10^6 Pa. The gas has a molar mass of 4.3 x 10^(-2) kg mol^(-1). Calculate the density of the gas in the cylinder.

It's useful to start from the density formula and see what we need to find. The density is given by (rho) = m/V

We know the volume V, so we only need to find the mass m.

We are given the value for molar mass, and knowing that the number of moles, n, is given by: n=m/M, we can rearrange the equation and express the mass: m = nM

The only thing we need to find is the number of moles, which can be found from the ideal gas law:

PV = nRT

n = PV/(RT)

Substituting this into the equation for density gives us the final formula:

rho = MP/(RT) (Note that the volume V cancels out)

Now the only thing left is to substitute in the values and calculate the final answer.

We have:

M = 0.043 kg mol-1

P = 1.6x106 Pa

R = 8.31 J K-1 mol-1

T = 22 C = 295 K (don't forget to change to Kelvin scale for such problems, noting the units for ideal gas constant R)

The final answer is:

rho = 28.1 kg m-3

AS
Answered by Augustinas S. Physics tutor

8775 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A geostationary satellite is orbiting Earth, a) What is meant by a geostationary orbit? b) Calculate the height at which the satellite orbits above the surface of the Earth. The radius of the Earth is 6400km and its mass is 6x10^24 kg.


A ball is hit horizontally at a height of 1.2 m and travels a horizontal distance of 5.0 m before reaching the ground. The ball is at rest when hit. Calculate the initial horizontal velocity given to the ball when it was hit.


A space probe of mass 1000kg, moving at 200m/s, explosively ejects a capsule of mass 300kg. The speed of the probe after the explosion is 250m/s. What is the velocity of the capsule?


Why does a small puddle of water evaporate at room temperature, even though the temperature is way below the boiling point of water?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning