Differentiate x^5 + 3x^2 - 17 with respect to x

When you are differentiating, use the formula:

The differential of ax^n is (n*a) x^(n-1). Or in words: 'multiply by the power, then reduce the power by 1.'

Hence for our question, x^5 differentiates to 5x^(5-1) = 5x^4; 3x^2 differentiates to (2*3)x^(2-1) = 6x.

-17 is eliminated because it is the same as -17x^0, so when you multiply -17 by the power, 0, -17 * 0 = 0.

The final answer is:

dy/dx = 5x^4 + 6x

Answered by David L. Maths tutor

3526 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate the following : ∫ln(x) dx


I am struggling understanding how to differentiate negative indices. I get confused with the power increasing or decreasing.


How to integrate e^(5x) between the limits 0 and 1.


ln(2x^2 + 9x – 5) = 1 + ln(x^2 + 2x – 15). Express x in terms of e


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences