Polynomial long division, how do I do it?

Polynomial long division is how to divide long functions f(x), called the dividend, by another function g(x), called the divisor. Which could lead to having a remainder, if it doesn't divide perfectly. 

Luckily there is one simple method to follow, 
 
Let's divide f(x) = x^2+2x+5 
by g(x) = x-2 
                                    
First write it out like 
        ____
g(x) | f(x) 
        __________
x-2 |  x^2+2x+5
 
 Now only look at the the first term in f(x), which is x^2, and our first term in g(x) which is x. 
how many times does x go into x^2? The answer is x times thus we write x on top of our function, like this:
 
          x
        ___________
 x-2 |  x^2+2x+5
 
Then multiply x^2 by our divisor x - 2 to get x^2-2x, and write it below the function like this:
 
          x
        ____________
 x-2 |  x^2+2x+5
        _____________
          x^2 -2x
 
Now we simply find x^2+2x minus (x^2-2x) = 4x
 
So add the 4x on a new row below, but also don't forget to carry down the + 5 term from our dividend, thus it should now look like this.
 
          x
        __________
 x-2 |  x^2+2x+5
        ___________
         x^2 -2x
        ___________
                 4x +5
 
Now it is as if we are dividing 4x + 5 by x - 2, so we ask the same question again, how many times does x go into 4x, the answer is 4 times, thus write + 4 at the top 
 
          x + 4
        __________
 x-2 |  x^2+2x+5
        ___________
         x^2 -2x
        ___________
                 4x +5
        
 
And then multiply 4 by x -2 and write it below, like this 
 
           x + 4
        __________
 x-2 |  x^2+2x+5
        ___________
         x^2 -2x
        ___________
                 4x +5
        ___________
                 4x - 8
 
Now find 4x+5  minus (4x -8) = 13 and write it below
 
           x + 4
        __________
 x-2 |  x^2+2x+5
        ___________
         x^2 -2x
        ___________
                 4x +5
        ___________
                 4x - 8
        ___________
                      13
 
Since we can no longer divide we are left with the remainder which is is 13/(x-2) 
 
Thus the solution is what we have at the top plus the remainder, 
the solution is
x + 4 + 13/(x-2) 
 
 
 

GP
Answered by Giulio P. Maths tutor

6443 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove by contradiction that sqrt(3) is irrational. (5 marks)


(M1) What direction does friction act in? What are the friction equations both generally and in limiting equilibrium? What does it mean for a system to be in equilibrium?


how to integrate by parts


Find all the solutions of 2 cos 2x = 1 – 2 sinx in the interval 0 ≤ x ≤ 360°.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences