solve sin(2x)=0.5. between 0<x<2pi


1)Take the inverse sin to take x from the sin(2x):

2x=arcsin(0.5).

2)Evaluate arcsin(0.5) to get pi/6:

so 2x= pi/6

3)Dividing by 2 to simplify we get 

x=pi/12.

4)To find the second solution we note that (pi/2)-(pi/12) =(5pi/12) is also a solution. 

So x= (5pi/12)

5)Sin(2x) has a period of pi. So to find the rest of the solutions we add pi to our previous solutions. 

So now x=pi/12, 5pi/12, 13pi/12 , 17pi/12

Answered by Yinglan Z. Maths tutor

22484 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how to derive escape velocity


Binomially expand the equation (2+kx)^-3


Given that y = 5x^2 - 4/(x^3), x not equal to 0, find dy/dx.


find dy/dx at t, where t=2, x=t^3+t and y=t^2+1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences