Prove that (sinx + cosx)^2 = 1 + 2sinxcosx

Starting on the left hand side we can expand out the brackets to get:
(sinx + cosx)(sinx + cosx)
sin2x+sinxcosx+sinxcosx+cos2x
Grouping together the like terms we can rearrange it to be:
sin2x + cos2x + 2sinxcosx
We now have one of the terms on the right hand side. We only need to get the 1. If we remember our identity sin2x + cos2x = 1 we can remove the first two terms and replace them with a 1, giving us:
1 + 2sinxcosx, the same as the right hand side, therefore proving the two are equal

AG
Answered by Adam G. Maths tutor

11168 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What exactly IS differentiation?


The General Form of the equation of a circle is x^2 + y^2 + 2gx +2fy + c = 0. Find the centre of the circle and the radius of the circle in terms of g f and c.


y = Sin(2x)Cos(x). Find dy/dx.


Show that the integral ∫(1-2 sin^2⁡x)/(1+2sinxcosx) dx = (1/2) ln2 between the limits π/4 and 0. [5 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning