Prove that (sinx + cosx)^2 = 1 + 2sinxcosx

Starting on the left hand side we can expand out the brackets to get:
(sinx + cosx)(sinx + cosx)
sin2x+sinxcosx+sinxcosx+cos2x
Grouping together the like terms we can rearrange it to be:
sin2x + cos2x + 2sinxcosx
We now have one of the terms on the right hand side. We only need to get the 1. If we remember our identity sin2x + cos2x = 1 we can remove the first two terms and replace them with a 1, giving us:
1 + 2sinxcosx, the same as the right hand side, therefore proving the two are equal

AG
Answered by Adam G. Maths tutor

9700 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find f'(x) and f''(x) when f(x) = 3x^2 +7x - 3


Differentiate the following function u = Cos(x3)


A curve has parametric equations: x = 3t +8, y = t^3 - 5t^2 + 7t. Find the co-ordinates of the stationary points.


Find and classify all the stationary points of the function f(x) = x^3 - 3x^2 + 8


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences