Prove that (sinx + cosx)^2 = 1 + 2sinxcosx

Starting on the left hand side we can expand out the brackets to get:
(sinx + cosx)(sinx + cosx)
sin2x+sinxcosx+sinxcosx+cos2x
Grouping together the like terms we can rearrange it to be:
sin2x + cos2x + 2sinxcosx
We now have one of the terms on the right hand side. We only need to get the 1. If we remember our identity sin2x + cos2x = 1 we can remove the first two terms and replace them with a 1, giving us:
1 + 2sinxcosx, the same as the right hand side, therefore proving the two are equal

AG
Answered by Adam G. Maths tutor

9997 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find, in radians, the general solution of the equation cos(3x) = 0.5giving your answer in terms of pi


Use the substitution u = 6 - x^2 to find the value of the integral of (x^3)/(sqrt(6-x^2)) between the limits of x = 1 and x = 2 (AQA core 3 maths


How do I find the co-ordinates and nature of the stationary points on a curve?


Find the general solution of the differential equation: d^2x/dt^2 + 5dx/dt + 6x = 2cos(t) - sin(t)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences