Prove that (sinx + cosx)^2 = 1 + 2sinxcosx

Starting on the left hand side we can expand out the brackets to get:
(sinx + cosx)(sinx + cosx)
sin2x+sinxcosx+sinxcosx+cos2x
Grouping together the like terms we can rearrange it to be:
sin2x + cos2x + 2sinxcosx
We now have one of the terms on the right hand side. We only need to get the 1. If we remember our identity sin2x + cos2x = 1 we can remove the first two terms and replace them with a 1, giving us:
1 + 2sinxcosx, the same as the right hand side, therefore proving the two are equal

AG
Answered by Adam G. Maths tutor

11223 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of y=6/(e^x+2) using calculus.


Solve the equation 3x^2/3 + x^1/3 − 2 = 0


Find the indefinite integral of Ln(x)


show that f(x)=cos(x) is even and what is its graphical property


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning