Showing all your working, evaluate ∫ (21x^6 - e^2x- (1/x) +6)dx

When integrating a long chain of functions, we can integrate each term seperately and combine them. Let us now integrate:∫21x6dx = 21∫x6dx. Using the Power Rule [∫xadx = (xa+1/a+1)], we can say that 21∫x6dx = (21x7)/7 = 3x7. ∫e2xdx. Now let u = 2x. du/dx = 2 so dx = du/2. Substitute both in to get:∫(eu/2)du = 1/2∫eudu. This is a common integral, which gives us 1/2 eu = 1/2 e2x. ∫(1/x)dx. This is a common integral which equals ln |x|∫6dx = 6∫dx = 6x (Integration of an integer).We then combine all the terms to give us 3x7 - e2x/2 - ln |x| + 6x.When ever we integrate without limits, we have to add a constant c. This is unknown, unless addition information is given, so we call this C. Hence, the answer is:3x7 - e2x/2 - ln |x| + 6x + C

Answered by Raghav A. Maths tutor

6003 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142


Find an equation of the circle with centre C(5, -3) that passes through the point A(-2, 1) in the form (x-a)^2 + (y-b)^2 = k


How do I tell if a curve has a maximum or a minimum?


Find the exact gradient of the curve y=ln(1-cos2x) at the point with x-coordinate π/6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences