Showing all your working, evaluate ∫ (21x^6 - e^2x- (1/x) +6)dx

When integrating a long chain of functions, we can integrate each term seperately and combine them. Let us now integrate:∫21x6dx = 21∫x6dx. Using the Power Rule [∫xadx = (xa+1/a+1)], we can say that 21∫x6dx = (21x7)/7 = 3x7. ∫e2xdx. Now let u = 2x. du/dx = 2 so dx = du/2. Substitute both in to get:∫(eu/2)du = 1/2∫eudu. This is a common integral, which gives us 1/2 eu = 1/2 e2x. ∫(1/x)dx. This is a common integral which equals ln |x|∫6dx = 6∫dx = 6x (Integration of an integer).We then combine all the terms to give us 3x7 - e2x/2 - ln |x| + 6x.When ever we integrate without limits, we have to add a constant c. This is unknown, unless addition information is given, so we call this C. Hence, the answer is:3x7 - e2x/2 - ln |x| + 6x + C

RA
Answered by Raghav A. Maths tutor

6800 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I get better at Mathematics? I am struggling with confidence and achieving low grades.


What is the method used for differentiation?


How do you differentiate?


A block of mass M lies stationary on a rough plane inclined at an angle x to the horizontal. Find a general expression relating the coeffecient of friction between the block and the plane and the angle x. At what angle does the box begin to slide?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning