Find the integral of sin^2(X)

As soon as you see a question asking you to integrate the square of sin, cos or tan, your first approach should be to use trigonometric identities and double angle formulas.

For sin2(X), we will use the cos double angle formula:
cos(2X) = 1 - 2sin2(X)

The above formula can be rearranged to make sin2(X) the subject:
sin2(X) = 1/2(1 - cos(2X))

You can now rewrite the integration: 
∫sin2(X)dX = ∫1/2(1 - cos(2X))dX

Because 1/2 is a constant, we can remove it from the integration to make the calculation simpler. We are now integrating:
1/2 x ∫(1 - cos(2X)) dX = 1/2 x (X - 1/2sin(2X)) + C

It is very important that as this is not a definite integral, we must add the constant C at the end of the integration.

Simplifying the above equation gives us a final answer:
∫sin2(X) dX = 1/2X - 1/4sin(2X) + C

Answered by Kyna F. Maths tutor

415684 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the expression cos^2(x).


What does differentiation actually do?


How can I integrate e^x sinx?


Using the substitution u = 2 + √(2x + 1), or other suitable substitutions, find the exact value of 4 0 1 ∫ 2 (2 1) +√ +x dx giving your answer in the form A + 2ln B, where A is an integer and B is a positive constant


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences