What is the gradient of y = xcos(x) at x=0?

First we want to calculate the derivative of y. To do this we use the product rule:If we rewrite y as y = uv, then dy/dx = vdu/dx + udv/dx.Here, we have u = x and v = cos(x).That means du/dx = 1 and dv/dx = -sin(x).Therfore dy/dx = cos(x)1 + x(-sin(x)) = cos(x) - xsin(x).To evaluate the gradient of y at x=0 we substitute x=0 into the derivative we have just calculated:gradient = cos(0) - 0*sin(0) = 1

FF
Answered by Fraser F. Maths tutor

4577 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the tangent line to the curve y = x^3+4x+5 at the point where x = 2?


Prove the following identity: (1+cos⁡(x)+cos⁡(2x))/(sin⁡(x)+sin⁡(2x) )=cot⁡(x)


how to write down the differential equation from a word problem, involving rate of change.


Use logarithms to solve 9^x=15


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning