What is the gradient of y = xcos(x) at x=0?

First we want to calculate the derivative of y. To do this we use the product rule:If we rewrite y as y = uv, then dy/dx = vdu/dx + udv/dx.Here, we have u = x and v = cos(x).That means du/dx = 1 and dv/dx = -sin(x).Therfore dy/dx = cos(x)1 + x(-sin(x)) = cos(x) - xsin(x).To evaluate the gradient of y at x=0 we substitute x=0 into the derivative we have just calculated:gradient = cos(0) - 0*sin(0) = 1

FF
Answered by Fraser F. Maths tutor

4536 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = 4x^3 - 6x^2 + 7 work out dy/dx for this expression


Use Implicit Differentiation to find dy/dx of the following equation: 3(x)^2 + 8xy + 5(y)^2 = 4


Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0


By integrating, find the area between the curve and x axis of y = x*exp(x) between x = 0 and x = 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning