What is the gradient of y = xcos(x) at x=0?

First we want to calculate the derivative of y. To do this we use the product rule:If we rewrite y as y = uv, then dy/dx = vdu/dx + udv/dx.Here, we have u = x and v = cos(x).That means du/dx = 1 and dv/dx = -sin(x).Therfore dy/dx = cos(x)1 + x(-sin(x)) = cos(x) - xsin(x).To evaluate the gradient of y at x=0 we substitute x=0 into the derivative we have just calculated:gradient = cos(0) - 0*sin(0) = 1

Answered by Fraser F. Maths tutor

3845 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


a typical question would be a setof parametric equations y(t) and x(t), asking you to find dy/dx and then the tangent/normal to the curve at a certain point (ie t = 2)


How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2


What is the gradient of the curve y = 2x^3 at the point (2,2)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences