Find the values of x for the equation: x^2 - 8x = 105

When presented with an equation that involves x^2, it is likely to be a quadratic equation. This leads us to rearrange to the equation above into the form of ax^2 + b + c = 0. Therefore the equation can be rearranged into x^2 - 8x - 105 = 0.

There are two main methods to solve this quadratic equation - factorising and quadratic formula.

Factorising involves finding two numbers that can multiply together to give -105 and add to form -8. As both numbers are negative we can deduce that one of those numbers are negative and the other is positive.

First start by stating the factors of 105: 1, 3, 5, 7 & 15. Using these numbers, find a pair that would give you a difference of 8. This is 7 and 15. There are two equations that we could form from this:

- (x+7)(x-15)=0

- (x-7)(x+15)=0

Only the first quadratic equation gives rise to -8x and therefore is the correct equation. The values of x is then -7 & 15 as you take the number within the bracket and inverse the sign.

The alternative method is using the quadratic formula: x = (-b +/- SQRT(b^2 - 4ac))/2a. The values for a = 1, b = -8 & c = -105. By substituting the values into the equation we get the answers -7 & 15.

DM
Answered by Dhulaxy M. Maths tutor

5252 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Issy goes to buy some fruit. She has been told by one friend that 2 apples and 3 bananas costs £3.80. She has been told by another friend that 5 apples and a banana costs £3.65. what are the individual costs of an apple and a banana?


Determine (27/8)^3/2


x^2-9x+20=0


Thomas wants to see how far he can throw a javelin. He records four of his throws as 45 metres, 40 metres, 55 metres, and x metres. Given that the mean of Thomas' throws is 50, determine the value of x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences