A line has an equation y = e^(2x) - 10e^(x) +12x, find dy/dx

To differentiate this equation, treat it like you would any other equation you are differentiating without exponentials i.e. take each term on it's own and differentiate that individually, then put the answer together at the end.DON'T FORGET: y = eax, dy/dx = aeax1) Take the term e2x and differentiate.y = e2xdy/dx = 2e2x2) Take the term -10ex and differentiate. (Don't forget about the negative!)y = -10exdy/dx = -10ex3) Take the term 12x and differentiate.y = 12xdy/dx = 124) Sum all the components to give the final answer.dy/dx = 2e2x - 10ex +12

Answered by Shruti V. Maths tutor

6285 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate (x^2 + 3x + 3)/(x+3)


Integrate with respect to x ) dy/dx= 6x^5


Find the tangent to the curve y=(3/4)x^2 -4x^(1/2) +7 at x=4, expressing it in the form ax+by+c=0.


How do you differentiate using the chain rule?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences